A Redundancy-Aware Sentence Regression Framework for Extractive Summarization
نویسندگان
چکیده
Existing sentence regression methods for extractive summarization usually model sentence importance and redundancy in two separate processes. They first evaluate the importance f(s) of each sentence s and then select sentences to generate a summary based on both the importance scores and redundancy among sentences. In this paper, we propose to model importance and redundancy simultaneously by directly evaluating the relative importance f(s|S) of a sentence s given a set of selected sentences S. Specifically, we present a new framework to conduct regression with respect to the relative gain of s given S calculated by the ROUGE metric. Besides the single sentence features, additional features derived from the sentence relations are incorporated. Experiments on the DUC 2001, 2002 and 2004 multi-document summarization datasets show that the proposed method outperforms state-of-the-art extractive summarization approaches.
منابع مشابه
Extractive speech summarization - from the view of decision theory
Extractive speech summarization can be thought of as a decision-making process where the summarizer attempts to select a subset of informative sentences from the original document. Meanwhile, a sentence being selected as part of a summary is typically determined by three primary factors: significance, relevance and redundancy. To meet these specifications, we recently presented a novel probabil...
متن کاملTaking into account Inter-sentence Similarity for Update Summarization
Following Gillick and Favre (2009), a lot of work about extractive summarization has modeled this task by associating two contrary constraints: one aims at maximizing the coverage of the summary with respect to its information content while the other represents its size limit. In this context, the notion of redundancy is only implicitly taken into account. In this article, we extend the framewo...
متن کاملEvent-Based Extractive Summarization
Most approaches to extractive summarization define a set of features upon which selection of sentences is based, using algorithms independent of the features themselves. We propose a new set of features based on low-level, atomic events that describe relationships between important actors in a document or set of documents. We investigate the effect this new feature has on extractive summarizati...
متن کاملUIDS: A Multilingual Document Summarization Framework Based on Summary Diversity and Hierarchical Topics
In this paper, we put forward UIDS, a new high-performing extensible framework for extractive MultiLingual Document Summarization. Our approach looks on a document in a multilingual corpus as an item sequence set, in which each sentence is an item sequence and each item is the minimal semantic unit. Then we formalize the extractive summary as summary diversity sampling problem that considers to...
متن کاملBiogeography-Based Optimization Algorithm for Automatic Extractive Text Summarization
Given the increasing number of documents, sites, online sources, and the users’ desire to quickly access information, automatic textual summarization has caught the attention of many researchers in this field. Researchers have presented different methods for text summarization as well as a useful summary of those texts including relevant document sentences. This study select...
متن کامل